Thursday, 29 December 2016

JN0-660 Service Provider Routing and Switching, Professional (JNCIP-SP)

JNCIP-SP Exam Objectives (Exam: JN0-660)

OSPF
Describe the concepts, operation and functionality of OSPFv2 and OSPFv3
OSPF LSA types
OSPF area types and operations
LSA flooding through an OSPF multi-area network
DR/BDR operation
SPF algorithm
Metrics, including external metric types
Authentication options
Summarize and restrict routes
Virtual links
OSPFv2 vs OSPFv3
Given a scenario, demonstrate knowledge of how to configure and monitor single-area and multi-area OSPF
Implement OSPF routing policy

IS-IS
Describe the concepts, operation and functionality of IS-IS
IS-IS link-state PDU (LSP) types
IS-IS areas/levels and operations
LLSP flooding through an IS-IS multi-area network
DIS operation
SPF algorithm
Metrics, including wide metrics
Authentication options
Route summarization and route leaking
Given a scenario, demonstrate knowledge of how to configure and monitor single-area and multi-area IS-ISa
Implement IS-IS routing policy

BGP
Describe the concepts, operation and functionality of BGP
BGP route selection process
Next hop resolution
BGP attributes – concept and operation
BGP communities
Regular expressions
Multipath
Multihop
Load balancing
Advanced BGP options
BGP route damping
Multiprotocol BGP
Given a scenario, demonstrate knowledge of how to configure and monitor BGP
Route reflection
Confederations
Describe the concepts, operation and functionality of BGP scaling mechanisms
Implement BGP routing policy

Class of Service (CoS)
Describe the concepts, operation and functionality of Junos CoS
CoS processing on Junos devices
CoS header fields
Forwarding classes
Classification
Packet loss priority
Policers, including tricolor marking and hierarchical policers
Schedulers
Drop profiles
Shaping
Rewrite rules
Hierarchical scheduling (H-CoS) characteristics (high-level only)
Given a scenario, demonstrate knowledge of how to configure and monitor CoS

IP Multicast
Describe the concepts, operation and functionality of IP multicast
Components of IP multicast, including multicast addressing
IP multicast traffic flow
Any-Source Multicast (ASM) vs. Source-Specific Multicast (SSM)
RPF – concept and operation
IGMP
PIM dense-mode and sparse-mode
Rendezvous point (RP) – concept, operation, discovery, election
SSM – requirements, benefits, address ranges
MSDP, including single and multi-PIM domains
Anycast RP
Routing policy and scoping
Given a scenario, demonstrate knowledge of how to configure and monitor IGMP, PIM-DM, PIM-SM (including SSM) and MSDP
Implement IP multicast routing policy

MPLS
Describe the concepts, operation and functionality of MPLS
RSVP and LDP operation
Primary/secondary paths
LSP metrics, including interaction with IGP metrics
LSP priority and preemption
Fast reroute, link protection and node protection
LSP optimization
Routing table integration options for traffic engineering
RSVP reservation styles
Routing policy to control path selection
Advanced MPLS features
Describe the concepts, operation and functionality of Constrained Shortest Path First (CSPF)
TED
IGP extensions
CSPF algorithm – selecting the best path
Tie-breaking options
Administrative groups
Advanced CSPF options
Given a scenario, demonstrate knowledge of how to configure and monitor MPLS, LDP and RSVP
RSVP-signaled and LDP-signaled LSPs
Traffic protection mechanisms
CSPF
Implement MPLS routing policy

Layer 3 VPNs
Describe the concepts, operation and functionality of Layer 3 VPNs
Traffic flow – control and data planes
Full mesh vs. hub-and-spoke topology
VPN-IPv4 addressing
Route distinguishers
Route targets
Route distribution
Site of origin
Sham links
vrf-table-label
Layer 3 VPN scaling
Layer 3 VPN Internet access options
Given a scenario, demonstrate knowledge of how to configure and monitor the components of Layer 3 VPNs
Describe the concepts, operation and functionality of multicast VPNs
Next-generation MVPNs (NG-MVPN)
Flow of control and data traffic in a NG-MVPN
Describe Junos support for carrier-of-carriers and interprovider VPN models

Layer 2 VPNs
Describe the concepts, operation and functionality of BGP Layer 2 VPNs
Traffic flow – control and data planes
Forwarding tables
Connection mapping
Layer 2 VPN NLRI
Route distinguishers
Route targets
Layer 2 VPN scaling
Describe the concepts, operation and functionality of LDP Layer 2 circuits
Traffic flow – control and data planes
Virtual circuit label
Layer 2 interworking
Describe the concepts, operation and functionality of VPLS
Traffic flow – control and data planes
BGP VPLS label distribution
LDP VPLS label distribution
Route targets
Site IDs
Given a scenario, demonstrate knowledge of how to configure and monitor Layer 2 VPNs
BGP Layer 2 VPNs
LDP Layer 2 circuits
VPLS

Automation
Demonstrate basic knowledge of using automation scripts
Operation scripts
Commit scripts
Event scripts

QUESTION 1
You are the administrator for a network that uses IBGP. As the network grows, you must examine options to support increased scale. Which two scaling options should you consider? (Choose two.)

A. route reflection
B. areas
C. zones
D. confederations

Answer: A,D


QUESTION 2
You manage an MPLS network where the PE devices consist of multiple vendors. You are asked to conceal the MPLS topology for all LSPs. Which global configuration parameter will accomplish this?

A. Configure no-decrement-ttl on the ingress router only.
B. Configure no-propagate-ttl on the ingress router only.
C. Configure no-decrement-ttl on all routers within the MPLS network.
D. Configure no-propagate-ttl on all routers within the MPLS network.

Answer: D


QUESTION 3
In which two ways does VPLS populate the MAC table? (Choose two.)

A. dynamically using BGP
B. dynamically using the source MAC address on received frames
C. dynamically using LDP
D. statically using CLI

Answer: B,D


QUESTION 4
Which CoS feature supports per-VLAN queuing and scheduling?

A. multilevel scheduling
B. hierarchical scheduling
C. tagged queuing
D. per-instance queuing

Answer: C


QUESTION 5
Which two statements are true about OSPFv3? (Choose two.)

A. OSPFv3 uses a 32-bit router ID to uniquely identify a node in the network.
B. OSPFv3 uses a 128-bit router ID to uniquely identify a node in the network.
C. OSPFv3 routes are always preferred over OSPFv2 routes for all traffic.
D. OSPFv3 and OSPFv2 can be configured at the same time.

Answer: A,D

Saturday, 3 December 2016

JN0-314 Junos Pulse Access Control, Specialist (JNCIS-AC)

JNCIS-AC Exam Objectives (Exam: JN0-314)

Overview
Identify the concepts, operation, and functionality of Junos Pulse Access Control Service
Junos Pulse Access Control Service components
Component functions and interaction
Identify the components of the access management framework
Interrelationship between realms, roles and policies

Platform Configuration
Demonstrate knowledge how to configure the basic elements of a Junos Pulse Access Control Service environment
Initial Junos Pulse Access Control Service configuration
Choosing the platform (e.g., virtual or physical)
Configure authentication servers
Connectivity verification

Roles
Identify the concepts, operation and functionality of roles
Purpose of roles
Role mapping
Customization of the end-user experience
Demonstrate knowledge of how to configure roles
Roles and role options

End User Access
Identify the Junos Pulse Access Control Service client access options
Junos Pulse
Odyssey Access Client (OAC)
Machine authentication and third party supplicant
Agentless access
Demonstrate knowledge of how to configure Junos Pulse Access Control Service clients
Junos Pulse
Odyssey Access Client (OAC)
Agentless access

Firewall Enforcement

Identify the concepts, operation and functionality of firewall enforcement
Purpose of resource policies
Resource policies for firewall enforcement
User-based firewall policies
Captive portal
Demonstrate knowledge of how to configure firewall enforcement
Junos Pulse Access Control Service configuration
SRX Series device configuration
User-based firewall policies
Captive portal

Layer 2 Enforcement
Identify the concepts, operation and functionality of Layer 2 enforcement techniques
802.1X security
RADIUS (related to 802.1X)
MAC authentication
Multiple supplicant authentication on EX Series devices
Demonstrate knowledge of how to configure Layer 2 enforcement
Junos Pulse Access Control Service configuration
EX Series device configuration
SRX Series device configuration

Endpoint Defense
Identify the concepts, operation and functionality of endpoint defense
Host Checker
Authentication policies and role restrictions
Demonstrate knowledge of how to configure endpoint defense
Host Checker
Authentication policies and role restrictions

Authentication Options

Identify the concepts, operation and functionality of user authentication
Authentication process
Authentication options
Demonstrate knowledge of how to configure authentication
Authentication servers including LDAP, RADIUS, AD/NT, anonymous
Authentication realms

Management and Troubleshooting

Demonstrate knowledge of how to manage and troubleshoot a Junos Pulse Access Control Service environment, including Junos Pulse Access Control Service and SRX Series devices
Logging (e.g., RADIUS logging, policy tracing)
System Monitoring
File Management
Information collection
Component connectivity
End user connectivity and enforcement

High Availability
Identify the concepts and requirements for high availability in a Junos Pulse Access Control Service environment
Clustering
Deployment options and considerations
Demonstrate knowledge of how to configure high availability
Junos Pulse Access Control Service configuration
SRX Series device configuration

Integration
Identify the concepts and requirements for Junos Pulse Access Control Service integration with other components
Integration with IF-MAP client
Integration with STRM
Integration with SRX Series devices
Integration with EX Series devices
Demonstrate knowledge of how to configure integration
IF-MAP federation
Syslog

QUESTION 1
A customer wants to create a custom Junos Pulse configuration. Which two are required?
(Choose two)

A. Connection set
B. Configuration set
C. Custom installer
D. Component set

Answer: A,D

Explanation:


QUESTION 2
What is a type of firewall enforcer supported by the Junos Pulse Access Control Service?

A. Checkpoint firewall
B. SRX Series device
C. DP sensor
D. MX Series device

Answer: B

Explanation:


QUESTION 3
A customer is trying to decide which 802.1X inner protocol to use on their network. The customer
requires that no passwords be sent across the network in plain text, that the protocol be supported
by the Windows native supplicant, and that the protocol supports password changes at Layer 2.
Which protocol would meet the customer's needs?

A. EAP-TLS
B. EAP-MD5
C. PAP
D. EAP-MSCHAPv2

Answer: D

Explanation:


QUESTION 4
You navigate to "UAC" > "Infranet Enforcer" > "Auth Table Mapping" in the admin GUI. You see
one policy, which is the unmodified, original default policy.
Which statement is true?

A. Dynamic auth table mapping is not enabled.
B. A successful authentication attempt will result in a new authentication table entry, which will be
delivered only to the Junos enforcer protecting the network from which the user has authenticated.
C. To create a static auth table mapping, you must delete the default policy.
D. The default policy applies only to the factory-default role User.

Answer: A

Explanation:


QUESTION 5
You have a Junos Pulse Secure Access Service acting as an IF-MAP client, configured to federate
all user roles to a Junos Pulse Access Control Service acting as an IF-MAP Federation server. A
remote user using Junos Pulse logs in to the Junos Pulse Secure Access Service; the Junos
Pulse Secure Access Service provisions a remote access session for that user.
What happens next?

A. The Junos Pulse Secure Access Service redirects the user to the Junos Pulse Secure Access
Service for authentication
B. The Junos Pulse Access Control Service provisions enforcement points to enable resource
access for that user.
C. The Junos Pulse Secure Access Service publishes user session and role information to the IFMAP
Federation server,
D. The Junos Pulse Secure Access Service provisions enforcement points to enable resource
access for that user.

Answer: C

Explanation: